SEO Texas, Web Development, Website Designing, SEM, Internet Marketing Killeen, Central Texas
SEO, Networking, Electronic Medical Records, E - Discovery, Litigation Support, IT Consultancy
Centextech
NAVIGATION - SEARCH

Understanding and Preventing Spoofing Attacks

A spoofing attack is a type of cyberattack in which an attacker disguises their identity or falsifies information to deceive a target or gain unauthorized access to a system or network. The goal of a spoofing attack is to trick the recipient into believing that the communication or interaction is legitimate, thereby bypassing security measures and gaining unauthorized access or extracting sensitive information.

Types of spoofing attacks:

IP Address Spoofing: During the IP spoofing attack, the attacker alters the source IP address of network packets to make it seem like they are coming from a reliable source. By spoofing the IP address, attackers can evade IP-based authentication and access restrictions. With IP Spoofing, attackers can carry out denial-of-service attacks, intercept network traffic, or engage in other malicious activities.

Email Spoofing: Email spoofing involves falsifying the sender's email address to give the impression that the email originated from another origin. In this attack, attackers often pretend to be a trusted entity or organization in order to deceive recipients into disclosing sensitive information, clicking on malicious links, or opening malware-infected attachments.

DNS Spoofing: DNS spoofing occurs when cyber attackers manipulate the process of DNS resolution to redirect users to fake websites or intercept their communication. By tampering with the DNS cache or creating forged DNS responses, attackers can steer users toward malicious websites that closely resemble legitimate ones. This paves the way for phishing attacks or the dissemination of malware.

Caller ID Spoofing: Caller ID spoofing is commonly used in voice-based attacks, where attackers manipulate the caller ID information displayed on the recipient's phone to make it appear as if the call is coming from a trusted source. This technique is often employed in vishing (voice phishing) attacks, where attackers trick individuals into revealing sensitive information over the phone.

Website Spoofing: Website spoofing involves creating fraudulent websites that mimic legitimate ones. Attackers may use similar domain names, design elements, and content to deceive users into entering their login credentials, financial information, or personal data. This technique is commonly associated with phishing attacks aimed at stealing sensitive information.

Mitigating spoofing attacks:

Implementing strong authentication mechanisms: Multi-factor authentication (MFA) can help prevent unauthorized access even if credentials are compromised through spoofing attacks.

Encrypting network traffic: By using encryption protocols such as SSL/TLS, it becomes difficult for attackers to intercept and manipulate data in transit.

Deploying intrusion detection and prevention systems (IDPS): IDPS can detect and block suspicious network activities associated with spoofing attacks.

Educating users: Raising awareness among users about the risks of spoofing attacks, providing guidelines on identifying phishing emails, and promoting safe online practices can help minimize the success rate of these attacks.

Implementing anti-spoofing controls: Network-level controls, such as ingress and egress filtering, can be enforced to verify and validate the source and integrity of network packets, reducing the effectiveness of IP spoofing.

For cybersecurity solutions, contact Centex Technologies at Killeen (254) 213 – 4740, Dallas (972) 375 – 9654, Atlanta (404) 994 – 5074, and Austin (512) 956 – 5454.

What Is Surface Web, Deep Web, and Dark Web

Broadly internet is classified into three layers, namely, the surface web, the deep web, and the dark web. Each of these layers represents a different level of accessibility and anonymity. From a cybersecurity perspective, it is important to know what you can do safely on the web by understanding these terms and knowing what they include.

Surface Web

It is estimated that the surface web comprises less than 4% of the entire internet. The surface web, often known as the visible web, is the section of internet that is accessible via search engines like Google and Bing. This covers all web pages that are indexed by search engines and content that is accessible to everyone. An example of surface web would be the common web pages that we see and browse every day (without signup), like Wikipedia.

Deep Web

The deep web is a part of the internet that is inaccessible to normal search engines. Deep web information is not indexed by search engines such as Google as they are restricted from reaching the content using various protocols. Individuals are also restricted from browsing the information unless they have a login (or special access) and/or know the precise path (URL). It is estimated that the deep web comprises approximately 90% of the whole internet.

Some examples of the deep web are:

  • Login-required social media/messaging services
  • Encrypted or password-protected online banking/financial information.
  • Medical records and other sensitive personal data held in systems accessible only to authorized people
  • Non-public court records and legal documents
  • Private forums and discussion boards that require registration and identification
  • Subscription-based streaming services like Netflix
  • Non-public government databases and archives.

Dark Web

The dark web is a section of the deep web that is deliberately hidden and requires specific software and protocols to access. The dark web is frequently associated with illegal activity. Browsing the dark web can be dangerous and illegal. It can expose you to malicious code/malware and viruses that can affect your computer and other devices. People should be careful and use the best cybersecurity practices to protect themselves.

It's important to know the differences between these three layers of the internet because they have different levels of risks and opportunity. The surface web is usually safe and open to everyone. The deep web and dark web, on the other hand, can be more dangerous and require more safety precautions.

How To Safely Browse Internet

  • Always use a reliable antivirus solution to protect your devices from viruses, malware, and other threats. It is also important to regularly update the antivirus software for protection from the latest threats which were not identified in earlier versions.
  • Use strong and complex passwords that are difficult to guess.
  • Keep your software and operating system up to date to have the most recent security fixes and features.
  • Be cautious of unsolicited emails and social media posts. Never give your personal information or click on a link from unknown senders.
  • Using a VPN service to browse internet can protect your online activity and encrypt your interactions.
  • Avoid accessing sensitive information or making financial transactions on public Wi-Fi networks.
  • Practice safe browsing by visiting sites that use SSL certificates.

Centex Technologies provides enterprise cybersecurity solutions. For more information on cybersecurity solutions for your business, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

How Do Hackers Bypass Firewall Security?

A firewall acts as the first layer of security against cyberattacks. It is a perimeter security device that is configured to monitor & analyze incoming and outgoing traffic. It either allows or blocks data packets based on the network configuration settings.

Although a firewall is an essential component of cyber security structure for any network, some cyberattacks manage to bypass the firewall and penetrate the network.

So how do hackers succeed in bypassing a firewall?

Let’s first understand how a firewall work.

To begin with, a firewall can be in the form of physical hardware or a configured software that runs on endpoint workstations or servers connected to a network.

  1. Firewall has pre-configured rules that are used to differentiate malicious traffic from regular traffic.
  2. The configuration rules may include the source of traffic, destination, content of data, permission requirements, etc.
  3. All incoming or outgoing traffic is analyzed against the configuration rules.
  4. The traffic adhering to set rules is allowed to pass through, while the traffic contradicting the configuration rules is blocked.

Now let’s understand what techniques hackers use to bypass a firewall.

  1. Exploiting Older Versions: This method is particularly used to bypass older version firewalls that lack “deep packet inspection” or DPI features. DPI enables the firewall to monitor & analyze the incoming & outgoing data packets for malicious code. However, the lack of DPI features reduces the capability of a firewall to detect & block malicious traffic. Threat actors take advantage of this reduced capability & penetrate the firewall by sending phishing emails with a link to inject malicious code into the system.
  2. IoT Devices: Large number of IoT devices connected to a network and difficulty in updating them make IoT devices highly vulnerable. This problem is enhanced by UPnP (Universal Plug and Play) feature of IoT devices that enables them to communicate freely with each other. Threat actors take advantage of the automated protocol implemented by IoT devices which allows them to bypass the firewall & connect to the router. Once the threat actors bypass the firewall, they use this path to deliver malware to the router & other devices connected to the WiFi.
  3. Exploiting Outgoing Traffic: If a firewall is configured to monitor incoming traffic only, the threat actors can steal data & send it to their own server unnoticed. Some organizations use selective configuration & set rules that allow only outgoing traffic only via HTTP, HTTPS, & DNS protocols. This limits the problem but doesn’t act as a complete solution. The threat actors can still use DNS to move any data across the firewall, as the data moving out via DNS is not monitored or blocked.
  4. Social Engineering Attacks: In a social engineering attack, hackers do not try to bypass the firewall. Instead, they gain legitimate access by posing as an allowed user to trick the employees. The hackers may pose as a system admin, a team member, or an IT support executive to gain remote access to the system and get past the firewall. This can be prevented by enabling multi-factor authentication to verify the identity of the person requesting access.
  5. SQL Injection Attacks: Traditional firewalls such as network firewall, generally operates at the network, transport, & session layers. This keeps the application layer unmonitored & exposed to attacks that are designed to target the application layer, such as SQL Injection attacks. Attackers take advantage of application vulnerabilities to inject malicious code into the system & gain access to data such as login credentials, financial details, etc.
  6. Misconfiguration: A misconfigured firewall offers an easy passage to hackers. This may happen when an organization makes infrastructure changes or sets highly permissive firewall rules. This lowers the capability of the firewall to identify and block malicious traffic.

To know more about cyber security solutions and how to protect your network from cyberattacks, contact Centex Technologies. You can contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

Understanding Cyber Threat Hunting

Despite deploying security precautions to protect their networks from cyberattacks, numerous firms have experienced network breaches. Nowadays, threat actors use complex and sophisticated tactics to infiltrate a network, the impact of which may not be mitigated by traditional methods. The proactive procedure of checking the network for any hostile activity is referred to as cyber threat hunting.

Cyber threat hunting and cyber threat intelligence

Continuously monitoring the network for suspicious activity and gaps in the organization's ecosystem is required for cyber threat hunting. By analyzing previous data from a variety of sources, cyber threat hunting techniques keep a watch for potential new risks. Threat hunting techniques can discover, identify, and fix security flaws, vulnerabilities, and malicious behavior that normal security measures frequently fail to detect.

How to start hunting threats inside the Cyber or IT infrastructure?

Proactive preparation is the key to success in cyber security operations. It is critical to establish a solid foundation before beginning to develop the cyber threat hunting program.

A business is advised to take the following actions

  • Plan a cyber-threat hunting program - To begin cyber threat hunting, map the security process to any existing security model, such as the MITRE ATT&CK architecture. It is also recommended that the security posture be assessed to see how vulnerable the organization is to hazards and attacks.
  • Maturing the threat hunting program - After determining the level of cyber maturity, the next step is to decide whether the cyber threat hunting process should be carried out internally, externally, or a combination of both.
  • Identifying and addressing gaps in tool and technology implementation -  Analyze the current tools and determine what is required for successful threat hunting and the effectiveness of preventative technology.
  • Identifying and addressing security personnel training gaps - Threat detection necessitates the skills of an expert. If the organization lacks experienced internal specialists, it is recommended to use a third-party source.
  • Adoption of a cyber-threat hunting strategy - Any firm must have a solid cyber threat hunting strategy which can help in mitigating the impact of cyberattacks on its infrastructure.

What kind of professionals can perform active cyber threat hunting?

Cyber threat hunting calls for knowledge of all the systems and data in use at the firm. This has to be combined with exquisite expertize in threat intelligence analysis, reverse engineering and malware analysis. Threat hunters must also be excellent communicators who can present their results and contribute to the business case for sustained threat hunting resources. It is preferable to put together a team of curious, analytical issue resolvers who have these talents and are motivated to further improve them. The willingness to keep learning is another essential quality of effective cyber threat hunters. Cyber threats are continuously changing, thus threat hunters must be dedicated to keeping their knowledge current by following researchers, participating in online groups, and attending industry forums, which enables them to learn about new strategies.

Advanced next-generation technology and human professionals work in unison to create an effective threat hunting process. To find any potential risks and harmful activity, the threat hunters need investigation tools and other inputs. These tools make it possible for threat hunters to find and examine the risks. For example, XDR (Extended Detection and Response) collects all the signals from the IT ecosystem and EDR (Endpoint Detection and Response) delivers inputs from the endpoint solution. These tools aid in the earlier identification of any possible threats.

Cyber threat hunters should be aware of the automated procedures, alarms, and behavior analyses that have already been run on the data to avoid duplicating work. Threat hunting may go down a lot of rabbit holes, therefore it demands agility. However, there should be a structured framework in place to direct the hunt and allow for any necessary withdrawal from the rabbit holes.

Contact Centex Technologies for more information on cyber threat hunting. You can contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

 

Malware Analysis & Cybersecurity

Malware is a type of invasive software that can harm and destroy computer networks, servers, hosts, and computer systems. It serves as a blanket word for any forms of malicious software that are created with the purpose of causing harm to or abusing any programmable system, network, or service. Malware threats emerge in a variety of forms, including viruses, worms, adware, spyware, trojan viruses, and ransomware.

Malware analysis is the process of identifying and minimizing possible dangers to a website, application, or server. It is an essential procedure that improves sensitive information protection as well as computer security for a company. Vulnerabilities are addressed through malware analysis before they become major problems.

How can Malware analysis assist security professionals in detecting and preventing security threats?

Performing Malware analysis helps security professionals in the following ways: -

  1. To determine the origin of cyber-attacks.
  2. To estimate the severity and impact of a potential security threat.
  3. To determine the exploitation potential, vulnerabilities, and patching mechanisms.
  4. To logically prioritize the malware activity based on the seriousness of the threats.
  5. To identify and block any hidden IoCs (Indicators of Compromise) and IoAs (Indicators of Attack)
  6. To improve the effectiveness of IoCs, IoAs, SOC alerts, and notifications.

Malware analysis methodologies preferred by Cyber Security professionals

Static Analysis

During a static malware analysis, the malware's source code is inspected. After decoding the malware's source code, the IT team can inspect it to determine how it operates. By observing how the code operates, IT personnel may be able to build more secure procedures. In addition, static malware analysis serves as a logic check for the final analysis of dynamic malware.

Dynamic Analysis

Dynamic malware investigation refers to the process of quickly analyzing how malware acts. This requires checking the system for any changes the virus may have done. Newly launched processes and those whose settings have recently changed are tracked. In addition, the analysis would consider any changes to the DNS server settings on the client workstation. In addition to analyzing files and processes, dynamic malware investigation also analyzes network traffic and system behavior.

Combinatorial Malware Analysis

The most advantageous method is to combine both kinds of malware analysis methods. Combinatorial malware analysis can extract many more IoCs from statically generated code and uncover buried malicious code. Even the most complex malware may be detected by it.

Application of Malware Analysis in cybersecurity

Application of YARA and Sigma rules to detect and hunt threats

More advanced methods are being used by adversaries to elude existing detection systems. Threats may be found more quickly by using YARA and Sigma rules to spot malicious functionality or suspicious infrastructure. Extraction of IoCs is another result of malware investigation. To help teams stay alert to relevant risks in the future, the IoCs may subsequently be fed into SIEM solutions, TIPs (Threat Intelligence Platforms), and security orchestration tools.

Research & Development in Detection Engineering

Malware researchers from academia or corporate industries analyze malware to learn about the most recent tactics, vulnerabilities, and tools employed by adversaries. Threat researchers can leverage behavior and artifacts revealed by malware analysis to identify comparable activities, such as access to a certain network connection, port, or domain. SOC teams may utilize this data to detect comparable threats by analyzing firewall and proxy logs or SIEM data. Early in the attack life cycle, malware analysis systems offer higher-fidelity alarms. Security teams can therefore save time by prioritizing the outcomes from these alerts over other technologies.

Contact Centex Technologies for more information on how to protect your business from cyberattacks. You can call Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.